
NOTATION 

~, phase velocity of wave; z, time of passage of a wave crest from one pickup to the 
other; rl, time of passage of two successive waves over a pickup; H, distance between pairs 
of electrodes; u, rate of advance of photographic paper of oscillograph;~, displacement on 
oscillogram of wave profiles obtained from different pickups; b, distance between crests of 
two successive waves on one oscillogram obtained from one pickup; amax, amin, film thickness 
at crests and troughs of waves, respectively. 
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LOGARITHMIC EQUATIONS FOR THE RESISTANCE OF TURBULENT 

FRICTION FOR A VISCOUS LIQUID ~ND POLYMER SOLUTIONS 

V. A. Gorodtsov UDC 532.517.4 

It is shown that resistance equations of the Prandtl type for the flow of a vis- 
cous liquid and polymer solutions in the mode of minimal resistance in pipes and 
near a plate can be approximated with sufficient accuracy by simpler logarithmic 
equations. 

Flow of a Viscous Liquid in Smooth Pipes 

It is well known [i] that in a steady developed turbulent stream near a wall there exists 
a region of flow with an average velocity distribution close to logarithmic, and in accordance 
with the asymptotics (as Re * ~) there exists the logarithmic resistance law (thePrandtl equa- 
tion) 

1 / t / ) T =  a lg (Re 1 / s  ' b (1) 

I t  t u r n s  o u t  t h a t  t h e  e q u a t i o n  g i v e s  s a t i s f a c t o r y  a c c u r a c y  in  t h e  e n t i r e  r a n g e  o f  Rey n o ld s  
numbers  4 .103  < Re < 107 o f  p r a c t i c a l  i n t e r e s t  i f  one s e t s  

a ~ 2 . 0 ;  b ~ - - 0 . 8 .  (2) 
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A defect of Eq. (i) is the implicit nature of the connection between the resistance co- 
efficient i and the Reynolds number Re. It can be rewritten in the form of an explicit de- 
pendence of Re on i: 

t ~  10~"aRe/a = y.10Y, g~--- (a~r)T) -~, (3)  

although usually, conversely, one has to find the resistance coefficient from the known Rey- 
nolds number, i.e., y = y(t). 

A circumstance which simplifies the problem is the fact that t is large here (in the 
range of Reynolds numbers under consideration 8.102 < t < 2.106 and 2.5 < y < 5.6). 

By rewriting Eq. (3) in the form 

y ~- lgy  = lgt ,  

using successive iterations, we find 

y = lg t @ O (Ig lg t) = lg t -- lg lg t -~ O (lg lg t/lg t) . . . .  

(4) 

(5) 

One can show [2] that in this way one obtains a double series with respect to log t and 
log log t which converges absolutely at larger t. In principle, this solves the problem of 
finding the explicit form of the dependence of X on Re which is asYmPtotically exact with the 
same condition Re § = as in the original equation (i). 

Simplified equations obtained when only the first-order terms in this expansion are re- 
tained are examined below. The relative sizes of the discarded remainders are estimated. 

From Eqs. (4) we get the relations 

y = l g t - ~ q ,  y = I g ( / / l g t ) - - r 2 ,  . . . ,  

q lg(1 /~ ,  r~ l g ( 1 - - r l )  = = , . . .  , rn+ 1 = Ig(1 - -  r, /y) .  (6) 
Y 

The f u n c t i o n  r ~ ( y )  v a r i e s  l i t t l e  ( f r o m - - 0 . 4  t o  - -0 .75 )  i n  t h e  r e g i o n  o f  R e y n o l d s  n u m b e r s  
u n d e r  c o n s i d e r a t i o n ,  and by  r e p l a c i n g  i t  w i t h  t h e  l i n e a r  f u n c t i o n  c l y +  d~ we a r r i v e  a t  t h e  
resistance equation 

1 / V - ~  a'  Ig Re ,~' b', (7) 

a 
a ' =  - -  b ' / a ' = b / a @ ~ - -  lga.  (8)  

1 - - ~ '  

By choosing the coefficients ci and dl of the linear approximation so that the error in 
the determination of y is minimal in the range of its variation under consideration, we find, 
using (2), that 

a ' ~ 1 . 7 9 ;  b ' ~ - - i , 4 6 .  (9) 

Here the difference in X calculated from Eqs. (7) and (i) reaches only 1% at the ends of 
the range under consideration and at some middle point Re = 6.10 s. 

An equation of the type of (7) has been used repeatedly in work on hydraulics [3]. It 
was found that within the limits of the experimental errors the predictions of the simpler 
equation (7) and the Prandtl equation coincide and are satisfactory. Attempts at the theo- 
retical derivation of Eq. (7) independent of the derivation of (I) which have been made earlier 
have turned out, as is known [4, 5], to be unsound. 

The residual term r2 varies from 0.055 to 0.064, i.e., within even smaller limits than 
r~(y). Approximating r= by the constant 0.06, we obtain a solution of Eq, (i) which is no 
less accurate than in the preceding case: 

0 . 5 / | f ~  lg (0.2 Re) - -  lg lg (0.2 Re) @ 0.06. (10)  

It is not hard to write a whole series of such equations which are obtained through the 
replacement of the functions y -- rn(y) by linear functions which are close to them in the 
range of y under consideration. One can also obtain equations of a somewhat different type 
(more accurate, in particular) by approximating y -- rn(y) with other functions which have 
simple inverse functions. 
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By replacing y + log y with the power function cy ~/n + d we obtain the following resis- 

tance equation in place of (i): 

). ~ (a" Ig Re " b") -2~, (11) 

a" = ab'./c, b " / a " =  b / a - - d - - l g a .  (12) 

+ ~/n By choosing the coefficients c, d, and n so that the equality y ].o~__y_= cy + d is 
satisfied at the end points y: = 2.5 and y2 = 5.56 and the middle point ~y:y2 we obtain 

~ ( 1 . 3 1 1 g R e - - 0 . 5 )  -2,22. (13) 

Since the inaccuracy of the approximation used here for the function y + log y is less 
than 1% in the indicated range, Eq. (13) is a good approximation for the dependence (i). 

The other equations can also be simplified using the simplified resistance equations (7) 
and (ii). For example, in place of the expression for the average velocity distribution (5.6 
corresponds to a = 2.0) 

< u ~ > = 5 . 6 1 g z  ~ @ B  0 ( 3 0 < z + < 0 . i r  ~) 

one can use  (7) and (9) to  w r i t e  

< u + > ~ 5 . 0 1 g R e  -Bo--6 .1- - -5 ,61g(z / r ) ,  

w h i l e  f o r  t he  maximum v e l o c i t y  we o b t a i n  

U*~ ,5 ,01gRe-~  B o ~ B1--6 .1 .  

Equations of a similar type are used in hydraulics [3]. 

(14) 

(15) 

(16) 

Turbulent Flow of a Viscous Liquid over a Plate 

The equations for the resistance of a smooth flat plate over which a pressureless stream 
of viscous liquid flows have a form similar to Eq. (i), as is known [i, 6]. 

For the local resistance coefficient 

1 / 1 cj = a lg (Re.,: ci) • b,  
following the change 

(17) 

1/[/c~ : 2ay, Re~ = (iat) 2 I0 -~'~ (18) 

I f  i n  a c c o r d a n c e  w i t h  t h e  e x p e r i m e n t a l  measurements  of  [1] we we obtain Eq. (4) as before. 
take 

a = 4.15; b =  1.7, (19) 

then in the range of Reynolds numbers of practical interest (5.105 ~Re x ~5.109) the param- 
eter t will be almost exactly as large as for flow in pipes (1.35.102 < t < 1.35.104 and 
1.86 < y < 3.58). In complete analogy with the foregoing, therefore, we will have as the 
approximate solutions of Eq. (17) 

t / ] / - Q ~  3,55 lgR% - -  4.8, (20) 

0 . 1 2 / ] / Q ~ u - - l g u @ 0 . 0 6 ,  u ~ I g ( O . 1 9 3 V ~ ) ,  (21) 

c[ ~ (2 lg Re x - -  0 . 8 )  - 2 , 3 2 .  (22) 

All these expressions convey the dependence of(Rex) described by Eq. (17) with an accu- 
racy no worse than 1%. 

For the total resistance coefficient Cf one can use in place of the equation 

1/VP~-y = 4.13 lg (ReLCI) (23) 

the approximate relations 

(24) I/~/CT~ 3.56 Ig ReL -- 6.0, 
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Fig. i. Resistance of turbulent friction as a 
function of the Reynolds number. Curves I and II 
are constructed from Eqs, (13) and (29). Points 
i, 2, and 3 pertain to water and to a polymer 
solution which is at different distances from the 
entrance to the pipe, greater than 370r and 550r, 
respectively (see Fig. 3 in [9]). 

0 . 1 2 1 / V ~  u - -  Igu -~ 0.06, u ~ - -  0.92 ~- lg l/-Rer~, (25) 

C I ~ (2.12 lgReL - -  1.94) -2.~s. (26) 

Equations (22) and (26) have received wide distribution in the literature [i, 6]. 

Minimum Resistance of Polymer Solutions in Pipes 

Under certain limiting conditions of the flow of polymer solutions of low concentration 
in smooth pipes [7] the coefficient of resistance of turbulent friction proves to be indepen- 
dent of the specific type of medium and of the pipe diameter, just as in the flow of viscous 
liquids. Under such conditions the Prandtl equation (i) is valid as before, and according to 
the experimental data of [8, 9] 

a ~ 9 . 5 ;  b ~ - - 1 9 . 1 .  (27) 

In this case the equation can be reduced to the form of (4) using the substitution (3). 
Now, however, the parameter is not as large as before. With variation in the Reynolds number 
from 5-10 ~ to 106 we have 5.1 < t < i0 ~ (0.8 < y < 2.6). Therefore, the accuracy of the ap- 
proximations under consideration proves to be lower, despite the narrower range of variation 
of Re. 

With the same values of the constants as in (27) the linear approximation of the func- 
tion y + log y leads to the equation 

1 / ~ / - ~  7.25 Ig Re - -  19,3. (28) 

This equation conveys the dependence (i), (27) with an accuracy of several percent [the 
difference in the determination of % from (28) and from (i), (27), can reach 5% in the range 
of Reynolds numbers under consideration].* 

As before, a power-law approximation of the function y + log y has good accuracy. It 
leads to the equation 

~ ( 3 * 1 5 1 g R e - - 6 . 8 )  -2,~s, (29) 

which  conveys  t he  dependence  ( 1 ) ,  (27) w i t h  1% a c c u r a c y .  I n  F i g .  1 c u r v e s  a r e  c o n s t r u c t e d  
on t h e  b a s i s  o f  (13) and (29) and e x p e r i m e n t a l  d a t a  a r e  p l o t t e d  f o r  w a t e r  and f o r  an aqueous  

*Of course, the accuracy of the approximation can be improved if one considers a narrower 
range of Reynolds numbers of higher ones. 
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solution of polyoxyethylene with a concentration of 10 -5 , taken from [9]. The points 2, cor- 
responding to measurements of the resistance at a smaller distance from the entrance to the 
pipe, lie somewhat above the curve based on (29), while those for a greater distance (3) lie 
below.* 

Flow of Polymer Solutions in Pipes (General Case) 

As was established in [i0], for polymer solutions of low concentrations the dependence 
of the resistance to flow in pipes is also described satisfactorily by the Prandtl equation 
with coefficients which depend on the properties of the solution (b also depends on the pipe 
diameter): 

A a - -  a -- 2 = ~/If 8, 

A b ~ b  ? 0,8 = -- Aa lg (5,66U, c r r/v). (30) 

Here ~ is a dimensionless parameter [7, i0] and U,c r is the value of the dynamic velocity 
which characterizes the start of anomalous resistance (Aa = 0 for u, < U, cr). 

As was noted, the Prandtl equation is reduced to (4) by the substitution (3). The ap- 
proximations discussed earlier prove to be less accurate in this case, however, since the 
parameter now can vary within much wider limits (according to [7] the maximum value of a is 
close to 17, i.e., larger than in (27)), while % can be larger than 2,10 -2 for small Reynolds 
numbers. This leads to the fact that y varies within wider limits, while t can take on values 
less than unity. 

If we use a power-law approximation of the function y + log y with constant coefficients 
n, c, and d, then in accordance with (ii), (12), and (30) we obtain 

~ c2n/a 2 {lg [Re (5.66 U.cr r/v) ~ -1 ]  - -  d - -  lg a - -  0.8/a} -2n. (31) 

The difference in ~ calculated from this equation and from an equation of the Prandtl 
type can even reach tens of percent. The accuracy could be increased by selecting coeffi- 
cients n, c, and d which depend on the characteristics of the solution and the pipe diameter, 
Very cumbersome equations are obtained in this case, however. 

The author thanks V. S. Belokon', V. N. Kalashnikov, and B. V. Lipatov for a discussion 
and for the presentation of the data of experimental measurements. 

NOTATION 

r, pipe radius; z, distance from wall; <u>, average flow velocity; U, maximum velocity; 
z + E zu,/v, u + ~ u/u,, dimensionless wall variables; v, viscosity of liquid; u,, dynamic velo- 
city; cf, local resistance coefficient; Cf, total resistance coefficient. 
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